

Journal of Organometallic Chemistry 542 (1997) 227-233

Synthesis and NMR spectroscopy of [PtH₃(triphos)]⁺ and [Pt(AuPPh₃)₃(triphos)]⁺ Crystal structure of [Pt(AuPPh₃)₃(triphos)]⁺ (triphos = CH₃C(CH₂PPh₂)₃)⁻¹

Martin Peter^a, Helmuth Wachtler^a, Ernst Ellmerer-Müller^b, Karl-Hans Ongania^b, Klaus Wurst^a, Paul Peringer^{a,*}

^a Institut für Allgemeine, Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria ^b Institut für Organische Chemie, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

Received 26 October 1996; revised 5 February 1997

Abstract

The platinum(IV) complex $[PtH_3(triphos)]^+$ (1) is formed upon treatment of $[PtCl_2(triphos-P, P')]$ with NaBH₄. The complex 1 reacts with 3 equiv. of $[AuCl(PPh_3)]$ to give the tetrahedral PtAu₃ cluster $[Pt(triphos)(AuPPh_3)_3]^+$ (2). The complexes 1 and 2 are characterised by one- and two-dimensional multinuclear NMR spectroscopy. The platinum atom of 2 is bonded to the three phosphorus atoms of the triphos ligand and to three gold atoms giving a six-coordinate Pt atom. The cation has a crystallographically imposed threefold axis defined by the Pt atom and the centre of the Au₃ triangle. Some distances and angles: Au -Au 285.80(8), Pt-Au 262.99(8)pm, Au-P 226.9(3)pm, Pt-P 231.2(3), Au-Au-Pt 57.088(13)°, Au-Pt-Au 65.82(2)°. © 1997 Elsevier Science S.A.

1. Introduction

Venanzi and coworkers reported on a series of heterometallic tetrahedral MAu₃ clusters, in which triangular [Au(PPh₃)]₃ fragments are held together by polyhydride complexes of platinum group metals of the composition [M(triphos)H_a]²⁺, e.g. [Ir(triphos)H₂]²⁺, [Rh(triphos)H₂]²⁺ and [Ru(triphos)H₃]²⁺ [1-3]. In this paper we report, that treatment of the platinum(IV) complex [PtH₃(triphos)]⁺ (1) with [AuClPPh₃] results in the 'hydride-free' cluster [Pt(triphos)(AuPPh₃)₃]⁺ (2). The new complexes 1 and 2 are characterised by multinuclear NMR spectroscopy, and 2 also by X-ray single crystal structure analysis. The related metallate-trahedrane clusters [V(CO)₅(AuPPh₃)₃]⁺, [W (P M e₃)₃ H ₄ (A u P P h₃)₃]⁺, [R h H (C O)(P P h₃)₂ (A u P P h₃)₃]⁺ and [Co(CO)₃(AuPPh₃)₃] have been reported [4-8].

Platinum-gold clusters are known involving Pt:Au ratios of 6:1 to 1:9 [9-24]. There is one 'PtAu₃' complex, [Pt(PPh₃)₂(AuPPh₃)₃]⁺, which has been synthesised by the reaction of [PtI(PPh₃)(AuPPh₃)₄]⁺ with PPh₃ [21].

2. Results and discussion

2.1. Synthesis and NMR spectroscopic characterisation of [PtH₃(triphos)]⁺ (1)

The hydride complex 1 is formed in quantitative yield upon treatment of $[PtCl_2(triphos-P, P')]$ [25] with NaBH₄ in MeOH or MeOH-CH₂Cl₂ as shown in Eq. (1).

Solutions of 1 in these solvents decompose over ca. 1 day to uncharacterised products. The hydride 1 was

^{*} Corresponding author.

¹ Dedicated to Professor K.E. Schwarzhans on the occasion of his 60th birthday.

isolated as the BPh₄⁻ salt, which is soluble in CH₂Cl₂. Solutions of the tetraphenylborate in CH₂Cl₂ are stable when stabilised by a trace of HBF₄ in Et₂O. Interestingly, the platinum(IV) complex 1 is formed by reaction of a platinum(II) complex with the reducing reagent NaBH₄. We suggest that [PtH₂(triphos-P, P')] is formed as intermediate and that subsequent oxidative addition of MeOH produces 1. A similar reaction appears to have occurred during the treatment of [Pt(C₆H₅)(MeOH)L₂]⁺ (L = PMe₃ or PEt₃) with NaBH₄ in MeOH where [PtH₃(C₆H₅)L₂]⁺ was occasionally identified as an unstable by-product [26].

The PtP₃H₃ kernel of 1 is directly derived from one bond $\{{}^{1}H\}^{31}P^{195}Pt$ (Fig. 1) and $\{{}^{31}P\}^{1}H^{195}Pt$ shift correlation experiments, showing that three equivalent phosphorus and three equivalent hydrogen donor atoms are bound to the platinum atom. This is in keeping with the fac geometry of 1, which is imposed by the triphos ligand. In a one bond ${}^{1}H^{195}Pt$ shift correlation experiment (Fig. 2), the tilt due to the passive ${}^{31}P^{-1}H$ and ${}^{195}Pt^{-31}P$ coupling indicates the same signs of the coupling constants, whereas in a one bond ${}^{31}P^{195}Pt$ shift correlation experiment, the tilt due to the passive ${}^{31}P^{-1}H$ and ${}^{195}Pt-{}^{1}H$ coupling indicates the reverse relative sign of the coupling constants. Values of ${}^{1}H$, ${}^{31}P$ and ${}^{195}Pt$ NMR chemical shifts and coupling constants are given in Section 3.

2.2. Synthesis of $[Pt(triphos)(AuPPh_3)_3]^+$ (2)

The complex 2 is obtained by an almost quantitative reaction of 1 with 3 equiv. of $[AuCl(PPh_3)]$ in CH_2Cl_2 -MeOH (Eq. (2)), and was isolated as chloride in good yields.

It is interesting to note, that while the formation of the clusters $[MH_2(triphos)(AuPPh_3)_3]^{2+}$, M = Rh, Ir, and

Fig. 1. One bond $({}^{1}H)^{11}P^{195}Pt$ shift correlation experiment of 1 showing the ${}^{195}Pt-{}^{1}H$ coupling pattern in the δ ${}^{195}Pt$ direction (vertical) and the ${}^{195}Pt-{}^{11}P$ coupling in the δ ${}^{11}P$ direction (vertical). The central vertical pattern is due to T_1 noise.

Fig. 2. One bond ${}^{1}H^{195}Pt$ shift correlation experiment of 1 showing the ${}^{195}Pt-{}^{31}P$ coupling pattern in the δ ${}^{195}Pt$ direction (vertical) and the ${}^{195}Pt-{}^{1}H$ coupling pattern in the δ ${}^{11}P$ direction (horizontal).

 $[RuH_3(triphos)(AuPPh_3)_3]^{2+}$ [1-3] required the absence of chloride, in the case of 2 the reaction is carried out without removing chloride. The cluster 2 is also formed from $[Pt(triphos)PPh_3]$ [25,27] and $[AuCl(PPh_3)]$ besides other products.

As indicated in Section 2.4, there is no evidence for the presence of hydride ligands.

2.3. X-ray structure of [Pt(triphos)(AuPPh₃)₃]⁺ (2)

The structure of **2** was determined by single crystal structure analysis and is presented in Fig. 3. Crystal and X-ray analytical data are shown in Table 1, fractional atomic coordinates in Table 2. The cluster **2** crystallises in the space group R3c. The same space group with very similar cell constants has been observed for the hydride clusters [RhH₂(triphos)(AuPPh₃)₃](O₃SCF₃)₂ [1] and [RuH₃(triphos)(AuPPh₃)₃](PF₆)₂ [3]. This indicates that the crystal packing is dominated by the large cations and that the remaining space (see Section 3) accommodates different types and numbers of anion and solvent of crystallisation. The complex **2** contains a

PtAu₁ tetrahedron. The platinum atom is bonded to the three phosphorus atoms of the triphos ligand and to three gold atoms giving a six-coordinate Pt atom. Each Au atom is coordinated by one PPh₁ ligand. The cluster cation possesses a crystallographically imposed threefold axis defined by the Pt atom and the centre of the Au, triangle. The distances Pt-Au, Au-Au, Pt-P and Au-P and various angles are compared in Table 3 with the corresponding values of the compounds [MHn(triphos)(AuPPh₁)₃]²⁺, M = Rh [1], Ir [2], n = 2; M = Ru [3], n = 3 and of $[V(CO)_5(AuPPh_3)_3]$ [4]. $[ReH_3(PMe_2Ph)_3(AuPPh_3)_3]^4$ [5]. $[W (PM e_3)_3 H_4 (A u PPh_3)_3]^+$ [6]. $[RhH(CO)(PPh_1), (AuPPh_1)_1]^+$ [7] and $[Co(CO)_3(AuPPh_3)_3]$ [8]. The crystal structure of $[Pt(PPh_3)_3(AuPPh_3)_3]^+$ [21] has not been determined. The angles Au-Au-Pt and Au-Pt-Au are 57.088(13)° and 65.82(2)° respectively. The dihedral angle P1-Pt-Au-P2 amounts to 8.17(27)°, i.e. the orientation of the Pt(triphos) fragment relative to the Au₃ triangle is nearly eclipsed. The corresponding dihedral angles of $[MH_{u}(triphos)(AuPPh_{3})_{3}]^{2+}$, M = Rh, Ru are 15.1° and 34.9° respectively [1,3].

2.4. NMR spectroscopy of [Pt(triphos)(AuPPh₃)₃]⁺ (2)

We were unable to detect hydride signals by ¹H NMR spectroscopy between ambient temperature and 223 K.

The ³¹P(¹H) NMR spectrum of the isotopomer without ¹⁹⁵Pt nuclei of 2 in CD₂Cl₂ at 297K showed patterns consistent with an A3B3 spin system, which was simulated using the parameters given in Section 3. The resonances A and B are readily assigned to the PPh₃ and triphos ligands according to the size of the Pt-P coupling constants. Upon cooling of a CD₂Cl₂ solution down to 223 K, the inner signals of the quartet-like patterns broaden. The temperature dependence of the ³¹P NMR spectra is compatible with a rotation of the [AuPPh₁]₁ moiety relative to the [Pt(triphos)] unit around the threefold axis. At ambient temperature the exchange process proceeds fast on the NMR time scale, whereas the slow exchange limit could not be reached due to solubility problems. Analogous dynamic processes were reported for the hydride clusters [MH₂(triphos)(AuPPh₃)₃]. M = Rh. lr. and [RuH₃(triphos)(AuPPh₃)₃]²⁺ [1-3]. A ³¹P NMR spectrum of $[IrH_2(triphos)(AuPPh_3)_3]^{2+}$ consistent with the static structure could be observed using a solution cooled below 173K [2]. Fluxional NMR behaviour is also observed with $[Pt(PPh_1)_2(AuPPh_1)_1]^*$ [21],

Fig. 3. View of the [Pt(triphos)(AuPPh₁)₁]⁺ cation (2). For clarity, only the ipso carbon atoms of the phenyl groups are drawn.

Table 1						
Crystal	data	and	structure	refinement	for	2

Crystal data and structure renn	
Description	Value
Molecular formula	C ₉₅ H ₈₄ Au ₃ ClP ₆ Pt×9CH ₃ OH
Formula weight	2521.26
Crystal system	Trigonal
Space group	R3c (Nr. 161)
Unit cell dimensions	$a = 2003.9(2) \text{ pm}, \alpha = 90^{\circ}$
	$b = 2003.9(2) \text{ pm}, \beta = 90^{\circ}$
	$c = 4471.0(9) \text{ pm}, \gamma = 120^{\circ}$
Volume	15.549(4) nm '
Z	6
Temperature	213(2) K
Radiation	$MoK\alpha (\lambda = 71.073 \text{ pm})$
Density (calculated)	1.616 Mgm ²
Absorption coefficient	5.750 mm '
F(000)	7428
Color. habit	Yellow column
Crystal size	$0.5 \times 0.25 \times 0.22 \text{ mm}$
θ range for data collection	$3.14 \text{ to } 24.01^{\circ}$
index ranges	$-22 \le n \le 22, -22 \le k \le 8.$
D. G. Martine and States 4	$-2 \le l \le 51$
Reflections collected	7997 2826 (B
Deflections with 1 > 3 of 1)	$2620(X_{\rm m} = 0.0.524)$
Reflections with $T \ge 20(T)$	2414 de comm
Adsorption contection	(#8600) 0 072 and 0 640
Patinamant mathed	Full-matrix least-semanas on F ²
Data /restraints /narameters	2826 / 1 / 351
Goodposs-of-fit on F ²	1 030
Final R indices [15 2m(1)]	$R_1 = 0.0319 \text{ w} R^2 = 0.0559$
R indices (all data)	R1 = 0.0467 wR2 = 0.0596
Absolute structure narameter	0.001(11)
Largest diff. peak and hole	$723 \text{ and } = 802 e \text{ pm}^{-1}$
Data callection	n an
	Ść
Diffractioneter used	Diemens 124 Miatah, aniantast amabita ama tal
Monochromator Ésan tena	Highly oriented graphine crystai
асан турс Кала хваад	Vaeabla: 6.0-35.0° min ¹ in <i>m</i>
Sean spece	
Standard enflortions	v.z Emonsumed overs 97 reflections
Salutian and rafinament	PRIME PARTY AND THE PARTY AND
Schutton and termement	
System used	SHELXS-86 (Sheldrick, 1990)
5 A .	SHELXS-86 (Sheldrick, 1993)
Solution	Direct methods
weighting scheme	$Catc. W = 1 / [G^{+}(F_0^{+}) + (0.0178P)^{+}$
	+ (人(現))(月7)
•• •	where $F = (F_0^2 + 2F_0^2)/3$
Hydrogen atoms	Cale., with isotropic displacement
	parameters
	Le and Le unies night man of
	THE & AIGHINS

2.5. Mass spectrometry of [Pt(triphos)(AuPPh_), [* (2)

Gentle ionisation techniques such as fast atom bombardment (FAB) and plasma desorption (PD) have recently been applied to the study of metal cluster compounds [28].

The FAB technique has been used successfully to characterise the cluster 2. The highest mass seen is m/z

Table 2 Selected atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($pm^2 \times 10^{-1}$) for 2

	x	ì.		U_{eq}
Au(1)	9237(1)	10110(1)	8773(1)	24(1)
Pt(1)	10000	10000	8315(1)	18(1)
P(1)	8928(2)	9741(2)	8034(1)	22(1)
P(2)	8386(2)	10174(2)	9089(1)	28(1)
C(11)	9253(7)	9995(6)	7640(2)	23(3)
C(12)	10000	10000	7539(4)	22(5)
C(13)	10000	10000	7198(5)	38(6)
C(11)	8124(7)	8751(7)	8035(3)	22(3)
C(121)	8369(7)	10242(7)	8081(3)	26(3)
C(211)	7381(7)	9466(8)	8979(3)	28(3)
C(221)	8444(7)	11107(7)	9089(3)	28(3)
C(231)	8446(7)	9929(7)	9483(3)	31(3)
CI(1)	6667	13333	9116(4)	276(10)

 U_{eq} is defined as one-third of the trace of the orthogonalised U_{ij} tensor.

2197. This is consistent with $[Pt(triphos)(AuPPh_3)_3]^+$ and shows that the counterion Cl⁻ is not desorbed with the cation. This is in keeping with recent results of Kubiak and coworkers, who observed $[Ni_3(\mu_3-L)(\mu_3-I)$

The peak at 2197 is the base peak. Prominent fragments are [Pt(triphos) Au₃PPh₃]⁺ (13%), [Pt(triphos) Au₃]⁺ (9%) and [Pt(triphos) Au₂]⁺ (6%).

3. Experimental section

NMR spectra were recorded on Bruker AC 200 and AM 300 spectrometers. The M P and 195 Pt NMR data are referenced against external 85% H₃PO₄ and 1 M

 Table 3
 Selected distances (pm) of 2 and related clusters

were used in both t_1 and t_2 . Mass spectra were recorded on a Finnigan MAT 95 instrument with the FAB technique.

between scans 0.5 s; shifted square sine bell windows

The complexes $[PtCl_2(triphos-P, P')]$ [25], $[Pt(triphos)PPh_3]$ [25,27] and $[AuCl(PPh_3)]$ [31] were prepared as described previously. Triphos was purchased from Strem Chemical Corp. Elemental analyses were performed by the Institut für Physikalische Chemie, Universität Wien.

All reactions were carried out in Schlenk glassware by using standard inert atmosphere techniques.

3.1. Synthesis of [PtH₄(triphos)]* (1)

A 44.6 mg sample of $[PtCl_2(triphos-P, P')]$ (0.05 mmol) was dissolved in MeOH-CH₂Cl₂, (0.5 + 0.5 ml), and treated with NaBH₄ (20 mg, 0.52 mmol).

Complex	Au-Au	MAu	Au-P	M-P	Ref.
[Pt(triphos)(AuPPh.).]Cl	285,80(8)	262.99(8)	226.9(3)	231.2(3)	this work
(Ru(triphos))), (AuPPh.), (PE.),	300.3(1)	267.9(2)	232.6(5)	233.0(5)	[3]
$[Rb(triphos)H_{s}(AuPPh_{s}), I(CF, SO_{s})]_{s}$	288.7(1)	269.5(2)	226.0(5)	231.3(5)	[1]
[leftrinbos)H.(AuPPh.), ICPE.),	288.2(2)	269,3(3)	227(1)	229(9)	[2]
$f \mathbf{P}_{\alpha}(\mathbf{P} \mathbf{M}_{\alpha}, \mathbf{P}_{\mathbf{h}}), \mathbf{H}_{\alpha}(\mathbf{A}_{\alpha} \mathbf{P} \mathbf{P}_{\mathbf{h}}), \mathbf{K}(\mathbf{O} \mathbf{R})$	293.1(2)	272.3(1)	226.7(5)	239,1(5)	[5]
$[V(CO), (A_0PPh_),]$	276.8(0)	270.9(1)	229.1(2)		[4]
	282.8(0)	273.6(1)	229.9(2)		
	285.5(0)	275.6(1)	230.0(2)		
[W(PMo.), H. (AuPPh.), [C]	288.1(1)	280.6(1)	228.7(3)	243,5(4)	[6]
[wither grant grant in grant i	285.8(1)	279.3(1)	229.2(4)	250.7(4)	
	279.6(1)	281.2(1)	228.4(4)	249,8(4)	
(Co(CO) (AuPPh.).]	279.52(2)	252.3(2)	226.5(2)		[8]
leve overen i u (vi)	281.76(6)	254.0(2)	227.1(2)		
	285,14(6)	250.4(1)	226.7(3)		t 1
[Rb(CO)(PPb.).H(AuPPh.).](PE.)	288.9(2)	266.4(3)	227(1)	236(1)	[7]
(Ruccover a dying and a dying a	281.4(2)	264.0(3)	229(1)	242(1)	
	291.4(2)	272.2(3)	223(1)		

The reaction mixture was stirred for 30 min and the solvent was evaporated under reduced pressure. The residue was dissolved in MeOH (1 ml) and added to a solution of NaBPh₄ (17.1 mg, 0.05 mmol) in MeOH (0.2 ml). The precipitate was washed with MeOH (0.5 ml) and dissolved in CH₂Cl₂ (1 ml). The CH₂Cl₂ phase was evaporated under reduced pressure leaving the product as white powder in almost quantitative yield. Anal. Calcd. for $C_{65}H_{62}BP_3Pt \cdot 2.8CH_2Cl_2$ C, 59.0; H 4.94. Found C, 59.1; H, 4.72.

³¹P NMR (81.015 MHz, CD₂Cl₂, 297 K): $\delta - 15.5$ (¹*J*(PtP) 1234 Hz); ¹H NMR (200.08 MHz, CD₂Cl₂): $\delta - 9.4$ (hydride, ¹*J*(Pt,H) 929 Hz, ²*J*(P,H) ca. 195 Hz and ca. 7 Hz); $\delta 2.4$ (d, CH₂, m. 6H, ²*J*(P,H) 9 Hz); $\delta 1.2$ (q, CH₃, m, 3H, ⁴*J*(P,H) 3 Hz); ¹⁹⁵ Pt NMR (43.022 MHz, CD₂Cl₂,): $\delta - 5520$.

3.2. Synthesis of [Pt(triphos)(AuPPh₃)₃]⁺ (2)

0.05 mmol of [PtH₃(triphos)]⁺ was prepared in situ as described above. [AuCl(PPh₃)] (74.2 mg, 0.015 mmol) was added. The mixture was allowed to stand for 1 day and washed with H₂O (3 × 0.5 ml). The solvent was evaporated under reduced pressure and the residue was recrystallised by dissolving in MeOH (0.3 ml) and allowing to stand. Orange-red crystals deposit in ca. 65% yield. Found: C, 50.22; H, 4.01; C1, 1.18. Calcd. for C₉₅H₈₄Au₃ClP₆ · 5MeOH: C, 50.19; H, 4.38; Cl, 1.48. ³¹P NMR (81.015 MHz, CD₂Cl₂, 297 K): δ 53.8 (PPh₃, m with ¹⁹⁵Pt satellites, ³J(P,P) 52.3 Hz, ²J(Ft,P) 296.7 Hz); δ 26.3 (triphos, m with ¹⁹⁵Pt satellites, ³J(Pt,P) 2229 Hz); ¹H NMR (200.08 MHz, CD₂Cl₂, 297 K): δ 2.3 (CH₂, m, 6H), δ 1.2 (CH₃, m, 3H); ¹⁹⁵Pt NMR (43.022 MHz, CD₂Cl₂, 297 K); δ = 3110 (qq).

3.3. Crystal structure determination

A column having approximate dimensions 0.5×0.25 $\times 0.22 \,\mathrm{mm^3}$ was mounted on a Siemens P4 diffractometer with a graphite-monochromatised Mo K α radiation. The unit cell parameters were determined and refined from 22 randomly selected reflections, obtained by P4 automatic routines. Data were measured via w-scans and corrected for Lorentz and polarisation effects. An empirical absorption correction [32] based on a series of ψ -scans was applied. A total of 5997 reflections were collected, of which 2826 were unique and 2414 with $l \ge 2\sigma(l)$. The structure was solved by direct methods (SHELXS-86) [33] and refined by a full matrix least squares procedure using F^2 (SHELXL-93) [34]. All non-hydrogen atoms of the cluster were refined with anisotropic displacement parameters. The hydrogen atoms of the phosphine ligands were included in the refinement at calculated positions using a riding model. The solvent molecules were refined with isotropic displacement parameters. One of the solvent molecules

was found to be disordered and was refined in two positions with occupancy of 0.5.

After calculations by Kempster and Lipson [35] only 85% of space is filled. This could be reason for the large thermal motions of the solvent molecules and the chlorine anion. The chlorine anion lies at a crystallographic threefold axis with a large thermal motion perpendicular to the axis. A slight disordering around this axis, produced by the electrostatic field of the surrounding cations, can also be responsible for this motion.

References

- A. Albinati, F. Demartin, P. Janser, L.F. Rhodes, L.M. Venanzi, J. Am. Chem. Soc. 111 (1989) 2115.
- [2] A. Albinati, J. Eckert, P. Hofmann, H. Rüegger, L.M. Venanzi, Inorg. Chem. 32 (1993) 2377.
- [3] A. Albinati, L.M. Venanzi, G. Wang, Inorg. Chem. 32 (1993) 3660.
- [4] J.E. Ellis, J. Am. Chem. Soc. 103 (1981) 6106.
- [5] B.R. Sutherland, K. Folurg, W.E. Streib, D.M. Ho, J.C. Huffman, K.G. Caulton, J. Am. Chem. Soc. 109 (1987) 3489.
- [6] A. Berry, M.L.H. Green, J.A. Bandy, K. Prout, J. Chem. Soc. Dalton Trans. (1991) 2185.
- [7] P.D. Boyle, B.J. Johnson, A. Buehler, L.H. Pignolet, Inorg. Chem. 25 (1986) 5.
- [8] G. Beuter, A. Brodbeck, M. Holzer, S. Maier, J. Strähle, Z. Anorg. Allg. Chem. 616 (1992) 27.
- [9] M.F.J. Schoondergang, J.J. Bour, G.P.F. van Strijdonck, P.P.J. Schlebos, W.P. Bosman, J.M.M. Smits, P.T. Beurskens, J.J. Steggerda, Inorg. Chem. 30 (1991) 2048.
- [10] M. Peter, P. Peringer, E.P. Müller, J. Chem. Soc. Dalton Trans. (1991) 2459.
- [11] J.J. Bour, R.P.F. Kanters, P.P.J. Schlebos, W.P. Bosman, H. Behm, P.T. Beurskens, J.J. Steggerda, Reel. Trav. Chim. Pays-Bas 106 (1987) 157.
- [12] J.J. Bour, R.P.F. Kanters, P.P.J. Schlebos, J.J. Steggerda, Rect. Trav. Chim. Pays-Bas 107 (1988) 211.
- [13] J.J. Bour, P.P.J. Schlebos, R.P.F. Kanters, M.F.J. Schoondergang, H. Addens, A. Overweg, J.J. Steggerda, Inorg. Chim. Acta 181 (1991) 195.
- [14] R.P.F. Kanters, P.P.J. Schlebos, J.J. Bour, W.P. Bosman, H.J. Behm, J.J. Steggerda, Inorg. Chem. 27 (1988) 4034.
- [15] D.E. Smith, A.J. Welch, I. Treurnicht, R.J. Puddephatt, Inorg. Chem. 25 (1986) 4616.
- [16] A. Albinati, H. Lehner, L.M. Venanzi, M. Wolfer, Inorg. Chem. 26 (1987) 3933.
- [17] T.G.M.M. Kappen, P.P.J. Schlebos, J.J. Bour, W.P. Bosman, G. Beurskens, J.M.M. Smits, P.T. Beurskens, J.J. Steggerda, Inorg. Chem. 34 (1995) 2121.
- [18] T.G.M.M. Kappen, P.P.J. Schlebos, J.J. Bour, W.P. Bosman, G. Beurskens, J.M.M. Smits, P.T. Beurskens, J.J. Steggerda, Inorg. Chem. 34 (1995) 2133.
- [19] P.D. Boyle, B.J. Johnson, B.D. Alexander, J.A. Casalnuovo, P.R. Gannon, S.M. Johnson, E.A. Larka, A.M. Mueting, L.H. Pignolet, Inorg. Chem. 26 (1987) 1346.
- [20] L.N. Ito, J.D. Sweet, A.M. Mueting, L.H. Pignolet, M.F.J. Schoondergang, J.J. Steggerda, Inorg. Chem. 28 (1989) 3696.
- [21] L.N. Ito, A.M.P. Felicissimo, L.H. Pignolet, Inorg. Chem. 30 (1991) 387.
- [22] J.J. Bour, P.P.J. Schlebos, R.P.F. Kanters, W.P. Bosman, J.M.M. Smits, P.T. Beurskens, J.J. Steggerda, Inorg. Chim. Acta 171 (1990) 177.

- [23] P. Braunstein, H. Lenner, D. Matt, A. Tiripicchio, M. Tiripicchio-Camellini, Angew. Chem. Int. Ed. Engl. 96 (1984) 304.
- [24] M.F. Hallam, D.M.P. Mingos, T. Adatia, M. McPartlin, J. Chem. Soc. Dalton Trans. (1988) 335.
- [25] J. Chatt, R. Mason, D.W. Meek, J. Am. Chem. Soc. 97 (1975) 3826.
- [26] D.P. Arnold, M.A. Bennett, Inorg. Chem. 23 (1984) 2110.
- [27] L.M. Green, Y. Park, D.W. Meek, Inorg. Chem. 27 (1988) 1658.
- [28] D.A. Morgenstern, C.C. Bonham, A.P. Rothwell, K.V. Wood, C.P. Kubiak, Polyhedron 14 (1995) 1129.
- [29] A. Bax, M.F. Summers, J. Am. Chem. Soc. 108 (1986) 2093.

- [30] A.J. Shaka, P.B. Barker, D.J. Ruben, J. Magn. Reson. 98 (1982) 286.
- [31] P. Braunstein, H. Lehner, D. Matt, Inorg. Synth. 27 (1990) 218.
- [32] A.C.T. North, D. Phillips, F.S. Mathews, Acta Crystallogr. Sect. A: 24 (1968) 351.
- [33] G.M. Sheldrick, SHELXS-86: Program for Crystal Structure Solutions, Göttingen, 1986.
- [34] G.M. Sheldrick, SHELXL-93: Program for Refinement of Crystal Structures, Göttingen, 1993.
- [35] D.T. Kemster, H. Lipson, Acta Crystallogr. Sect. B: 28 (1972) 3674.